Math 4550 HW 1 Solutions

	(1	
١		

7/2	10	1
0	0	\-
1	1-	91

inverse of 0 is 0 inverse of T is T

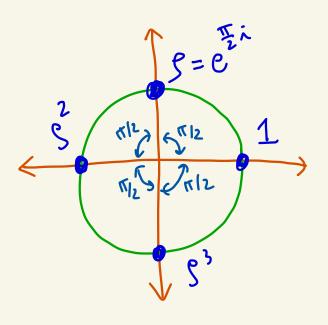
2	Z4	0	1	2	3
	10	0	-1	2	3
	1	1	2	3	10
	2	2	3	10	-1
	1/2	3	0	T	12

inverse of 0 is 0 inverse of T is 3 inverse of 2 is 2 inverse of 3 is T

ela	ment	inverse
	0	10
	7	5
	2	4
	3	3
	4	2
\ -	5	T

because
$$\overline{3}+\overline{3}=\overline{6}=\overline{0}$$

(4)
$$U_{4} = \{1,5,5^{2},5^{3}\}$$
 where $S = e^{\frac{2\pi\lambda}{4}} = e^{\frac{\pi\lambda}{2}}$



Vч	1	3	ς ²	23
1	1	9	8 s	3
3	3	92	63	1
65	g ²	3	1	5
23	93	1	5	6 s

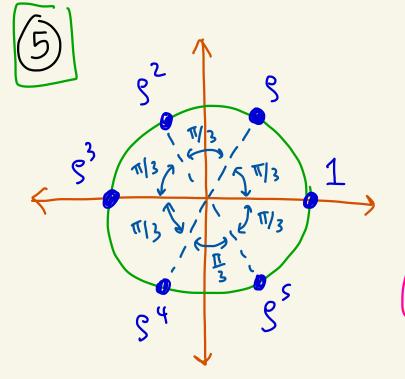
KEY FORMULA:

Use S'= 1

to calculate.

element	inverse
1	1
S	S 3
52	8 s
53	5

← be cause
$$S^2 \cdot S^2 = S^4 = 1$$



$$U_6 = \{1, 5, 5^2, 5^3, 5^4, 5^5\}$$

Where $S = e^{\frac{2\pi i}{6}} = e^{\frac{\pi i}{3}i}$

KEY FORMULA: Use $S^6 = 1$ to calculate

	_	
_	element	inverse
-	1	1
-	S	55
	32	54
	23	63
	54	52
	55	S

because
$$g^3$$
, $g^3 = g^6 = 1$

Use:
$$r^3 = 1$$
, $s^2 = 1$, $r^k s = sr^{-k} = sr^{3-k}$

\$ ۲ ٔ
Srz
SC
5
r ²
Υ
1

inverses:
$$1=1$$
 $s=s$
 $r=r^2$ $(sr)^{-1}=sr^2$
 $(r^2)^{-1}=r$ $(sr^2)^{-1}=sr^2$

$$D_8 = \{1, r, r^2, r^3, s, sr, sr^2, sr^3\}$$

Use:
$$r^4 = 1$$
, $s^2 = 1$, $r^k s = sr^{-k} = sr^{4-k}$

(b)
$$rsr^3 = sr^1r^3 = sr^2$$

 $(sr^3)(sr^2) = sr^3sr^2 = ssr^{-3}r^2 = s^2r^{-1} = 1$
 $r^2 = r^3$
 $r^2 = r^3$

$$= s^{2} - 2 = r^{2} = r^{2} - 2 = r^{2} = r^{2}$$

$$= s^{2} - 2 = r^{2} = r^{2} - 2 = r^{2}$$

$$= s^{2} - 2 = r^{2} = r^{2} = r^{2} - 2 = r^{2}$$

$$= s^{2} - 2 = r^{2} = r^{2} = r^{2} = r^{2}$$

(c)
$$r \cdot r^3 = r^4 = 1$$
 thus $r^{-1} = r^3$
 $r^2 \cdot r^2 = r^4 = 1$ thus $(r^2)^{-1} = r^2$
 $(sr)(sr) = srsr = ssr^{-1}r = s^2 \cdot 1 = 1 \cdot 1 = 1$
thus $(sr)^{-1} = sr$

$$(sr^{2})(sr^{2}) = sr^{2}sr^{2} = ssr^{-2}r^{2} = s^{2}.1 = 1.1 = 1$$

 $+hus (sr^{2})^{-1} = sr^{2}$

$$8 (a) A = \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix} B = \begin{pmatrix} 1 & 0 \\ 1/2 & 5 \end{pmatrix}$$

$$det(A) = 1 \cdot 1 - (-1)(2) = 1 + 2 = 3 \neq 0$$

$$det(B) = 1 \cdot 5 - 0 \cdot \frac{1}{2} = 5 \neq 0$$
Thus, A, B ∈ GL(2, IR)

To show that

A and B are

in GL(2,1R)

you show they

have non-zero

determinant

Now we calculate A-1, B-1, and AB.

We need this formula:

Thus,

$$A^{-1} = \frac{1}{1 \cdot 1 - (-1)(2)} \begin{pmatrix} 1 & 1 \\ -2 & 1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 1 & 1 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} 1/3 & 1/3 \\ -2/3 & 1/3 \end{pmatrix}$$

$$A = \frac{1}{1 \cdot (1 - (-1)(2))} \begin{pmatrix} -2 & 1 & 1 \\ -2 & 1 & 1 \\ -1 & 1 & 1 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 5 & 0 \\ -\frac{1}{2} & 1 \end{pmatrix} = \begin{pmatrix} -\frac{1}{10} & \frac{1}{5} \\ -\frac{1}{10} & 1 \end{pmatrix}$$

$$B = \frac{1}{1 \cdot 5 - 0 \cdot \frac{1}{2}} \begin{pmatrix} 5 & 0 \\ -\frac{1}{2} & 1 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 5 & 0 \\ -\frac{1}{2} & 1 \end{pmatrix} = \begin{pmatrix} -\frac{1}{10} & \frac{1}{5} \\ -\frac{1}{10} & \frac{1}{5} \end{pmatrix}$$

$$AB = \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \frac{1}{2} & 5 \end{pmatrix} = \begin{pmatrix} 1 \cdot 1 - 1 \cdot \frac{1}{2} & 1 \cdot 0 - 1 \cdot 5 \\ \frac{2}{2} & 1 \cdot 0 + 1 \cdot \frac{1}{2} & 1 \cdot 0 - 1 \cdot \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & -5 \\ \frac{3}{2} & 5 \end{pmatrix}$$

$$det(A) = 5.3-0.0 = 15 \neq 0$$

$$det(B) = (-1)(2) - (1)(-1) = -1 \neq 0$$
Thus, A, B ∈ GL(2, IR)

To show that

A and B are

in GL(2,1R)

you show they

have non-zero

determinant

Now we calculate A-1, B-1, and AB.

We need this formula.

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{\alpha d - bc} \begin{pmatrix} d & -b \\ -c & \alpha \end{pmatrix}$$

Thus

$$A^{-1} = \frac{1}{5.3-0.0} \begin{pmatrix} 3 & 0 \\ 0 & 5 \end{pmatrix} = \frac{1}{15} \begin{pmatrix} 3 & 0 \\ 0 & 5 \end{pmatrix} = \begin{pmatrix} 1/5 & 0 \\ 0 & 1/3 \end{pmatrix}$$

$$B = \frac{1}{(-1)(2)-(1)(-1)} \begin{pmatrix} 2 & -1 \\ 1 & -1 \end{pmatrix} = \frac{1}{(-1)} \begin{pmatrix} 2 & -1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ -1 & 1 \end{pmatrix}$$

$$AB = \begin{pmatrix} 5 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} -5+0 & 5+0 \\ 0-3 & 0+6 \end{pmatrix} = \begin{pmatrix} -5 & 5 \\ -3 & 6 \end{pmatrix}$$

$$D_{2n} = \{ 1, r, r^2, ..., r^{n-1}, s, sr, sr^2, ..., sr^{n-1} \}$$

Where
$$r^{n}=1$$
, $s^{2}=1$, $r^{k}s=sr^{-k}$

Thus,

$$(Sr^{k})(Sr^{k}) = Sr^{k}Sr^{k}$$

$$= 5 \cdot 5 \cdot r^{-k} r^{k}$$

$$= 5 \cdot 5 \cdot r^{-k} r^{k}$$

$$= 1 \cdot 1$$

$$S = 1$$

Since
$$(sr^k)(sr^k) = 1$$
 we
Know that $(sr^k)^{-1} = sr^k$.

To show that x=yshow that xy=1.

This is the definition of inverse.

Suppose that a * b = a * c.

Since G is a group and a ∈ G there exists a in G.

multiply a * b = a * c by a to get

 $a^{-1}*(a*b) = a^{-1}*(a*c)$

By associativity in G we get

 $(\bar{\alpha}' * \alpha) * b = (\bar{\alpha}' * \alpha) * C$

Thus,

e * b = e * c

where e is the identity of G.

50)

b = C.

(METHOD 1)

Our assumption is that if XEG then x = x. That is, x * x = e.

Let a, be G.

Let's show that G is abelian. I we must show

By assumption we know (a*b)*(a*b)=e0 + v = 6

We are assuming that x*x=e. Plug in x=a*b. × = 6 x = pto get these.

10, axbxaxb=e.

6 x 6 = e

Apply a on the left to get

$$a + (a + b + a + b) = a + e$$

Thus, b*a*b=a.

Apply b to the left to get b*(b*a*b) = b*a.Thus, a * b = b * a.

Problem assumption

Our assumption is that $x=x^{-1}$ for all $x \in G$.

Let a, b E G.

Then,

(a=a, b=b $a*b = (a*b)^{-1} = b^{-1}*a^{-1} = b*a$

theorem from class

Thus, axb=bxa. So, G is abelian.

(a) Let's show that Zio is not a group under multiplication.

The identity is I under multiplication. Let's show that I has no inverse. Try all combinations:

$$2.\overline{6} = \overline{12} = 2$$

none of these equal T.

Thus, Z has no inverse under multiplication.

(b) Let
$$G = \{ \overline{2}, \overline{4}, \overline{6}, \overline{8} \}$$
 in \mathbb{Z}_{10} .

We will show that G is a $g(0)$ of

We will show that G is a group under multiplication.

Since we are in Z10 we know that a*(b*c)=(a*b)*c.

Let's check for closure, identity, and inverses

G	三	4	6	8
Z	4	8	Z	6
4	8	16	4	Z
16	Z	4	6	8
<u>-</u>	6	2	8	4
	1	1	1	1

we are in Z10 so for example 6,4=24=4 differ by 20=2110

- O G is closed under multiplication
- 6.6 = 6 8=5,8 So 6 is the identity under multiplication
- 3) 2.8=6 } 6 is identify. 4.4=6 } identify. 6.6=6

 $\mathbb{Z} - \{0\} = \{ \dots, -5, -4, -3, -2, -1, 1, 2, 3, 4, 5, \dots \}$

The identity element under multiplication is 1.

Note that 2 does not have an inverse.

For we would need 2x=1 for Sume $x \in \mathbb{Z}-\{0\}$.

But this would require $x = \frac{1}{2}$ which is not in $\mathbb{Z}-\xi \circ \xi$.

So, Z-203 is not a group under multiplication.

Consider
$$x * y = \sqrt{xy}$$

Consider
$$2 \times 3 = \sqrt{2.3} = \sqrt{6}$$

For example, $2 \times 3 = \sqrt{2.3} = \sqrt{6}$

example
$$1*(2*3) = \sqrt{1\cdot(2*3)} = \sqrt{1\cdot\sqrt{2\cdot3}}$$
 $= \sqrt{\sqrt{23}} \approx 2.45$

$$(1*2) *3 = \sqrt{(1*2) \cdot 3} = \sqrt{\sqrt{1 \cdot 2} \cdot 3}$$

$$= \sqrt{\sqrt{2} \cdot 3} \approx 2.06$$

(15) Let G=R-{-1}.

We will show that G is a group under the operation axb = a+b+ab

(i) Suppose a, b ∈ G.

Then $a,b \in \mathbb{R}$ and $a \neq -1, b \neq -1$.

We will show that axb E G.

We have a*b = a+b+ab.

This is a real number in IR.

We show a+b+ab ≠-1.

Suppose atbtab=-1.

Then, atab=-1-b

Thus, a(1+b) = - (1+b). 7 can divide by [th since bf-1 so 1+bf0.

Then, $\alpha = -1$.

Contradiction.

Thus, axb = a+b+ab is in R but net -1. So, axbeG.

(ii) Let
$$a,b,c \in G$$
.

Then,
$$a*(b*c) = a*(b*c*bc)$$

$$= a+(b*c*bc) + a(b*c*bc)$$

$$= a+b+c+bc+ab+ac+abc$$
and
$$(a*b)*c = (a+b+ab)*c$$

$$= (a+b+ab)+c+(a+b+ab)c$$

$$= a+b+ab+c+ac+abc$$
We see that
$$a*(b*c) = (a*b)*c$$
(iii) We will show that $e=0$.

Heres how I got
$$e=0$$
.
We need $e*x=x$ for all x .
Whis gives $e*x*=x$
This gives $e*x*=x$
That is $e*=x=0$
That is $e*=x=0$
That is $e*=x=0$
Or, $e(1+x)=0$ for all x .

So,
$$e=0$$
 or $1+x=0$.
Since $x \neq -1$ for all $x \in G$
we need $e=0$

Let XEG.

Then,

Len,
$$0 + x = 0 + x + 0x = x$$

and

$$\frac{1}{2} \times \frac{1}{2} \times \frac{1}$$

So, O is the identity element.

(iv) Let XEG.

Then XER and X = -1.

We want to find an inverse y for x. We need x * y = 0

So, need x+y+xy=0.

That is y + xy = -x

or, 7(1+x)=-x

That is, $y = \frac{-x}{1+x}$ which exists since $1+x\neq 0$ because X = -1.

Is y in G?

If it wasn't then $\frac{-x}{1+x} = -1$. But then -x = -1-x or 0 = -1 which can't happen. So, yeb (yell and y+-1) Let's show that $x' = \frac{-x}{1+x}$. We have $\left(\frac{1+x}{-x}\right) + x = \frac{(+x)}{-x} + x + \left(\frac{(+x)}{-x}\right) x$ $=\frac{1+x}{1+x}=\frac{1+x}{0}=\frac{1+x}{0}=0$ $\times * \left(\frac{-\times}{1+\times}\right) = \times + \frac{-\times}{1+\times} + \times \left(\frac{-\times}{1+\times}\right)$ $= \frac{x + x^2 - x - x^2}{1 + x} = \frac{0}{1 + x} = 0$ So, $x*\left(\frac{-x}{1+x}\right)=0$ and $\left(\frac{-x}{1+x}\right)*x=0$ where 0 is the identity. Thus, $x' = \frac{-x}{1+x}$. By (i), (iii), (iii), (iv) we have that

Gira 9100p under axb = a+b+ab

Let G be an abelian group. Let a, b e G. We will show by induction that (a+b) = (an) + bn. (a*b)' = a*b = (a')*(b').If n=1 then $(\alpha * b)^{k} = (\alpha^{k}) * (b^{k})$ (*)\(\times \text{k+1} = \times \times \times \times \) for some k. $(\alpha + b)^{k+1} = (\alpha + b)^{k} * (\alpha + b)$ Thea, $= (\alpha^k) * (b^k) * \alpha * b$ $= (\alpha^k) * (b^k) * \alpha * b$ $= (a^k) * a * (b^k) * b$ $= (a^k) * (b^{k+1})$ $= (a^{k+1}) * (b^{k+1})$ $= (a^k) * (b^k) * (b^k)$ We have shown $(a*b)^{k+1} = (a^k)*(b^k)$. By induction $(a*b)^n = (a^n)*(b^n)$ for all n.